Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines.
نویسندگان
چکیده
Transferrin (Tf) conjugates of monomeric artemisinin (ART) and artemisinin dimer were synthesized. The two conjugates, ART-Tf and dimer-Tf, retained the original protein structure, and formed stable aggregates in aqueous buffer. ART-Tf induced declines in proteins involved in apoptosis (survivin), cell cycling (cyclin D1), oncogenesis (c-myelocytomatosis oncogene product (c-MYC)), and dysregulated WNT signaling (beta-catenin) in both the human prostate (DU145) and breast (MCF7) cancer cell lines. Both ART-Tf and dimer-Tf induced down-regulation of survivin, c-MYC and mutated human epidermal growth factor receptor-2 (ERBB2 or HER2) in the BT474 breast cancer cell line. To our knowledge, this is the first demonstration that an ART derivative can cause a decline of ERBB2 in a human cancer cell line. Potential mechanisms for the observed effects are presented. Both transferrin conjugates strongly inhibited the growth of BT474 cells in the same concentration range that the conjugates caused declines in the levels of ERBB2, survivin, and c-MYC, while showing essentially no toxicity towards MCF10A normal breast cells.
منابع مشابه
pH-Responsive Artemisinin Derivatives and Lipid Nanoparticle Formulations Inhibit Growth of Breast Cancer Cells In Vitro and Induce Down-Regulation of HER Family Members
Artemisinin (ART) dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs) remained tightly associa...
متن کاملArtemisinin-transferrin conjugate retards growth of breast tumors in the rat.
BACKGROUND Artemisinin is a compound isolated from the wormwood Artemisia annua L. It reacts with iron and forms cytotoxic free radicals. It is selectively more toxic to cancer than normal cells because cancer cells contain significantly more intracellular free iron. Previously, we found that covalently tagging artemisinin to transferrin enhanced the selectivity and toxicity of artemisinin towa...
متن کاملEffects of artemisinin-tagged holotransferrin on cancer cells.
Artemisinin reacts with iron to form free radicals that kill cells. Since cancer cells uptake relatively large amount of iron than normal cells, they are more susceptible to the toxic effect of artemisinin. In previous research, we have shown that artemisinin is more toxic to cancer cells than to normal cells. In the present research, we covalently attached artemisinin to the iron-carrying plas...
متن کاملEffects of artemisinin and its derivatives on growth inhibition and apoptosis of oral cancer cells.
BACKGROUND Artemisinin is of special biological interest because of its outstanding antimalarial activity. Recently, it was reported that artemisinin has antitumor activity. Its derivatives, artesunate, arteether, and artemeter, also have antitumor activity against melanoma, breast, ovarian, prostate, CNS, and renal cancer cell lines. Recently, monomer, dimer, and trimer derivatives were synthe...
متن کاملInduction of Apoptosis in Human Breast Cancer MCF-7 Cells by a Semi-Synthetic Derivative of Artemisinin: A Caspase-Related Mechanism
Background: Artesunate has recently been used in some pharmacological preparation to induce tumor cell apoptosis. The drug is a semi-synthetic derivative of artemisinin, traditionally used for its antimalarial. However, up to now, its anticancer mechanism against diff erent types of tumors is not known.Objectives: The most important purposes of the present research was fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anticancer research
دوره 33 1 شماره
صفحات -
تاریخ انتشار 2013